197
J. V. Neel, "Diabetes Mellitus: A 'Thrifty' Genotype Rendered Detrimental by 'Progress,'" American Journal of Human Genetics 14, no. 4 (December 1962): 353–62, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932342/.
198
J. R. Speakman, "Thrifty Genes for Obesity and the Metabolic Syndrome – Time to Call off the Search?," Diabetes and Vascular Disease Research 3, no. 1 (May 2006): 7–11, https://doi.org/10.3132/dvdr.2006.010; J. R. Speakman, "Evolutionary Perspectives on the Obesity Epidemic: Adaptive, Maladaptive, and Neutral Viewpoints," Annual Review of Nutrition 33, no. 1 (July 2013): 289–317, https://doi.org/10.1146/annurev-nutr-071811–150711.
199
Два обзора работ середины 2000-х по этой теме: E. J. Masoro, "Overview of Caloric Restriction and Ageing," Mechanisms of Ageing and Development 126, no. 9 (September 2005): 913–22, https://doi.org/10.1016/j.mad.2005.03.012, и B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, "Ruminations on Dietary Restriction and Aging," Cellular and Molecular Life Sciences 64, no. 11 (June 2007): 1323–28, doi: 10.1007/s00018–007–6470–y.
200
R. Weindruch and R. L. Walford, The Retardation of Aging and Disease by Dietary Restriction (Springfield, IL: C. C. Thomas, 1988), цит. по: Kennedy, Steffen, and Kaeberlein, "Ruminations," 1323–28; L. Fontana and L. Partridge, "Promoting Health and Longevity Through Diet: From Model Organisms to Humans," Cell 161, no. 1 (March 26, 2015): 106–18, https://doi.org/10.1016/j.cell.2015.02.020.
201
R. J. Colman et al., "Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys," Science 325, no. 5937 (July 10, 2009): 201–4, https://doi.org/10.1126/science.1173635.
202
J. A. Mattison et al., "Impact of Caloric Restriction on Health and Survival in Rhesus Monkeys from the NIA Study," Nature 489, no. 7415 (September 13, 2012): 318–21, https://doi.org/10.1038/nature11432. См. там же комментарий Остэда: S. N. Austad, "Aging: Mixed Results for Dieting Monkeys," Nature 489, no. 7415 (September 13, 2012): 210–11, https://doi.org/10.1038/nature11484, и новостную статью на эту тему в том же номере журнала: A. Maxmen, "Calorie Restriction Falters in the Long Run," Nature 488, no. 7413(August 30, 2012): 569, https://doi.org/10.1038/488569a.
203
Laura A. Cassiday, "The Curious Case of Caloric Restriction," Chemical & Engineering News online, дата последнего изменения 03.08.2009, https://cen.acs.org/articles/87/i31/Curious-Case-Caloric-Restriction.html.
204
Gideon Meyerowitz-Katz, "Intermittent Fasting Is Incredibly Popular. But Is It Any Better Than Other Diets?," Guardian (US edition) online, дата последнего изменения 01.01.2020, https://www.theguardian.com/commentisfree/2020/jan/02/intermittent-fasting-is-incredibly-popular-but-is-it-any-better-than-other-diets.
205
V. Acosta-Rodríguez et al., "Circadian Alignment of Early Onset Caloric Restriction Promotes Longevity in Male C57BL/6J Mice," Science 376, no. 6598 (May 5, 2022): 1192–202, https://doi.org/10.1126/science.abk0297. См. там же комментарий: S. Deota and S. Panda, "Aligning Mealtimes to Live Longer," Science 376, no. 6598 (May 5, 2022): 1159–60, https://doi.org/10.1126/science.adc8824.
206
Уолкер М. Зачем мы спим. – М.: Азбука, 2024.
207
Matthew Walker, Why We Sleep: The New Science of Sleep and Dreams (New York: Scribner, 2017). В частности, о влиянии сна на старение см. главу 8.
208
A. Vaccaro et al., "Sleep Loss Can Cause Death Through Accumulation of Reactive Oxygen Species in the Gut," Cell 181, no. 6 (June 11, 2020): 1307–28.e15, https://doi.org/10.1016/j.cell.2020.04.049. См. также научно-популярную статью на эту тему: Veronique Greenwood, "Why Sleep Deprivation Kills," Quanta, дата последнего изменения 04.06.2020, https://www.quantamagazine.org/why-sleep-deprivation-kills-20200604/, and Steven Strogatz, "Why Do We Die Without Sleep?" The Joy of Why (подкаст, расшифровка), March 22, 2022, https://www.quantamagazine.org/why-do-we-die-without-sleep-20220322/.
209
C.-Y Liao et al., "Genetic Variation in Murine Lifespan Response to Dietary Restriction: From Life Extension to Life Shortening," Aging Cell 9, no. 1 (February 2010): 92–95, https://doi.org/10.1111/j.1474–9726.2009.00533.x.
210
L. Hayflick, "Dietary Restriction: Theory Fails to Satiate," Science 329, no. 5995 (August 27, 2010): 1014, https://www.science.org/doi/10.1126/science.329.5995.1014; L. Fontana, L. Partridge, and V. Longo, "Dietary Restriction: Theory Fails to Satiate – Response," Science 329, no. 5995 (August 27, 2010): 1015, https://www.science.org/doi/10.1126/science.329.5995.1015.
211
Saima May Sidik, "Dietary Restriction Works in Lab Animals, But It Might Not Work in the Wild," Scientific American online, last modified December 20, 2022, https://www.scientificamerican.com/article/dietary-restriction-works-in-lab-animals-but-it-might-not-work-in-the-wild/.
212
Fontana and Partridge, "Promoting Health and Longevity," 106–18.
213
J. R. Speakman and S. E. Mitchell, "Caloric Restriction," Molecular Aspects of Medicine 32, no. 3 (June 2011): 159–221, https://doi.org/10.1016/j.mam.2011.07.001.
214
Захватывающую историю об открытии рапамицина вы найдете в статье: Bethany Halford, "Rapamycin's Secrets Unearthed," Chemical & Engineering News online, дата последнего изменения 18.06.2016, https://cen.acs.org/articles/94/i29/Rapamycins-Secrets-Unearthed.html. Она послужила источником материала для нескольких следующих абзацев этой главы. См. также: David Stipp, "A New Path to Longevity," Scientific American online, дата последнего изменения 01.01.2012, https://www.scientificamerican.com/article/a-new-path-to-longevity/.
215
U. S. Neill, "A Conversation with Michael Hall," Journal of Clinical Investigation 127, no. 11 (November 1, 2017): 3916–17, https://doi.org/10.1172/jci97760; C. L. Williams, "Talking TOR: A Conversation with Joe Heitman and Rao Movva," JCI Insight 3, no. 4 (February 22, 2018): e99816, https://doi.org/10.1172/jci.insight.99816.
216
M. B. Ginzberg, R. Kafri, and M. Kirschner, "On Being the Right (Cell) Size," Science 348, no. 6236 (May 15, 2015): 1245075, https://doi.org/10.1126/science.1245075.
217
N. C. Barbet et al., "TOR Controls Translation Initiation and Early G1 Progression in Yeast," Molecular Biology of the Cell 7, no. 1 (January 1, 1996): 25–42, https://doi.org/10.1091/mbc.7.1.25. Воспоминания Холла о тех давних днях и о том, как трудно было убедить научное сообщество принять идею, что рост клетки непрерывно контролируется: M. N. Hall, "TOR and Paradigm Change: Cell Growth Is Controlled," Molecular Biology of the Cell 27, no. 18 (September 15, 2016): 2804–6, https://doi.org/10.1091/mbc.E15–05–0311.
218
D. Papadopoli et al., "mTOR as a Central Regulator of Lifespan and Aging," F1000 Research 8 (July 2, 2019): 998, https://doi.org/10.12688/f1000research.17196.1; G. Y. Liu and D. M. Sabatini, "mTOR at the Nexus of Nutrition, Growth, Ageing and Disease," Nature Reviews Molecular Biology 21, no. 4 (April 2020): 183–203, https://doi.org/10.1038/s41580–019–0199-y.
219
L. Partridge, M. Fuentealba, and B. K. Kennedy, "The Quest to Slow Ageing Through Drug Discovery," Nature Reviews Drug Discovery 19, no. 8 (August 2020): 513–32, https://doi.org/10.1038/s41573–020–0067–7.
220
D. E. Harrison et al., "Rapamycin Fed Late in Life Extends Lifespan in Genetically Heterogeneous Mice," Nature 460, no. 7253 (July 16, 2009): 392–95, https://doi.org/10.1038/nature08221; см. там же комментарий М. Кэберлейна и Р. Кеннеди: M. Kaeberlein and R. K. Kennedy, "Ageing: A Midlife Longevity Drug?," Nature 460, no. 7253 (July 16, 2009): 331–32, https://doi.org/10.1038/460331a.
221
