282
R. Mostoslavsky et al., "Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6," Cell 124, no. 2 (January 24, 2006): 315–29, https://doi.org/10.1016/j.cell.2005.11.044; E. Michishita et al. "SIRT6 Is a Histone H3 Lysine 9 Deacetylase That Modulates Telomeric Chromatin," Nature 452, no. 7186 (March 27, 2008): 492–96, https://doi.org/10.1038/nature06736; A. Roichman et al., "SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan," Journalsof Gerontology: Series A 72, no. 5 (May 1, 2017): 603–15, https://doi.org/10.1093/gerona/glw152; X. Tian et al., "SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species," Cell 177, no. 3 (April 18, 2019): 622–38.e22, https://doi.org/10.1016/j.cell.2019.03.043.
283
C. Brenner, "Sirtuins Are Not Conserved Longevity Genes," Life Metabolism 1, no. 2 (October 2022), 122–33, https://doi.org/10.1093/lifemeta/loac025.
284
P. Belenky, K. L. Bogan, and C. Brenner, "NAD+ Metabolism in Health and Disease," Trends in Biochemical Sciences 32, no. 1 (January 2017): 12–19, https://doi.org/10.1016/j.tibs.2006.11.006.
285
H. Massudi et al., "Age-Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue," PLoS One 7, no. 7 (2012): e42357, https://doi.org/10.1371/journal.pone.0042357; X. H. Zhu et al., "In Vivo NAD Assay Reveals the Intracellular NAD Contents and Redox State in Healthy Human Brain and Their Age Dependences," Proceedings of the National Academy of Sciences (PNAS) of the United States of America 112, no. 9 (February 17, 2015): 2876–81, https://doi.org/10.1073/pnas.1417921112; A. J. Covarrubias et al., "NAD+ Metabolism and Its Roles in Cellular Processes During Ageing," Nature Reviews Molecular Cell Biology 22, no. 2 (February 2021): 119–41, https://doi.org/10.1038/s41580–020–00313-x.
286
H. Zhang et al., "NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice," Science 352, no. 6292 (April 28, 2016): 1436–43, https://doi.org/10.1126/science.aaf2693; см. тж. комментарий Гваренте к этой статье: L. Guarente, "The Resurgence of NAD+," Science 352, no. 6292 (April 28, 2016): 1396–97, https://doi.org/10.1126/science.aag1718; K. F. Mills et al., "Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice," Cell Metabolism 24, no. 6 (December 13, 2016): 795–806, https://doi.org/10.1016/j.cmet.2016.09.013.
287
Чарльз Бреннер, электронное письмо автору от 22 января 2023.
288
Редокс – окислительно-восстановительные реакции, участвующие в клеточном дыхании. – Прим. авт.
289
Partridge, Fuentealba, and Kennedy, "Quest to Slow Ageing," 513–32.
290
Global News Wire, "Nicotinamide Mononucleotide (NMN) Market Will Turn Over USD251.2 to Revenue to Cross USD953 Million in 2022 to 2028 Research by Business Opportunities, Top Companies, Opportunities Planning, MarketSpecific Challenges," August 19, 2022, https://www.globenewswire.com/en/news-release/2022/08/19/2501489/0/en/Nicotinamide-Mononucleotide-NMN-Market-will-Turn-over-USD-251–2-to-Revenue-to-Cross-USD-953-million-in-2022-to-2028-Research-by-Business-Opportunities-Top-Companies-opportunities-p.html.
291
Martin Weil, "Lynn Margulis, Leading Evolutionary Biologist, Dies at 73," The Washington Post online, November 26, 2011, https://www.washingtonpost.com/local/obituaries/lynn-margulis-leading-evolutionary-biologist-dies-at-73/2011/11/26/gIQAQ5dezN_story.html.
292
Lynn Margulis, "Two Hit, Three Down – The Biggest Lie: David Ray Griffin's Work Exposing 9/11," цит. по: Dorion Sagan, ed., Lynn Margulis: The Life and Legacy of a ScientificRebel (White River Junction, VT: Chelsea Green, 2012), 150–55.
293
Joanna Bybee, "No Subject Too Sacred," in Sagan, ed. Lynn Margulis, 156–62.
294
L. Sagan, "On the Origin of Mitosing Cells," Journal of Theoretical Biology 14, no. 3 (March 14, 1967): 255–74, https://doi.org/10.1016/0022–5193(67)90079–3.
295
Наличие двух мембран рассматривается как подтверждение симбиотической гипотезы. Различия между мембранами отражают эндосимбиотическое происхождение митохондрий: внешняя мембрана по липидному составу больше напоминает мембраны эукариотических клеток, а внутренняя близка по составу к мембранам бактерий. – Прим. ред.
296
Гипотезу о том, что АТФ в митохондриях синтезируется за счёт протонного градиента (тока заряженных частиц – протонов) на мембране, предложил Питер Митчелл, и сначала она вызвала горячие споры. Митчелл в 1978 г. был удостоен Нобелевской премии по химии. См.: Royal Swedish Academy of Sciences, "The Nobel Prize in Chemistry 1978: Peter Mitchell," пресс-релиз от 17 октября, 1978 г., опубликованый на сайте Нобелевской премии: https://www.nobelprize.org/prizes/chemistry/1978/press-release/. Половину Нобелевской премии по химии в 1997 г. получили Пол Бойер и Джон Уокер за исследование молекулярной «турбины», непосредственно производящей АТФ. В пресс-релизе Нобелевского комитета содержится прекрасное описание этого механизма: Royal Swedish Academy of Sciences, "The Nobel Prize in Chemistry 1997: Paul D. Boyer, John E. Walker, Jens C. Skou," пресс-релиз от 15 октбря 1997 г., доступен на сайте Нобелевской премии: https://www.nobelprize.org/prizes/chemistry/1997/press-release.
297
F. Du et al., "Tightly Coupled Brain Activity and Cerebral ATP Metabolic Rate," Proceedings of the National Academy of Sciences (PNAS) of the United States of America 105, no. 17 (April 29, 2008): 6409–14, https://doi.org/10.1073/pnas.0710766105. Популярное изложение этой статьи см. в N. Swaminathan, "Why Does the Brain Need So Much Power?," Scientific American online, April 29,2008, https://www.scientificamerican.com/article/why-does-the-brain-need-s/.
298
За сутки в человеческом организме синтезируется примерно 40 кг АТФ. При этом каждая молекула АТФ в течение суток проходит в среднем 2000–3000 циклов ресинтеза. – Прим. ред.
299
Ian Sample, "UK Doctors Select First Women to Have 'Three-Person Babies,'" Guardian (US edition) online, дата последнего изменения 01.02.2018, https://www.theguardian.com/science/2018/feb/01/permission-given-to-create-britains-first-three-person-babies.
300
J. Valades et al, "ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson's Diseases," Neuron 98, no. 6 (June 27, 2018): 1155–69, https://doi.org/10.1016/j.neuron.2018.05.022.
301
N. Sun, R. J. Youle, and T. Finkel, "The Mitochondrial Basis of Aging," Molecular Cell 61, no. 5 (March 3, 2016): 654–66, https://doi.org/10.1016/j.molcel.2016.01.028.
302
D. Harman, "Origin and Evolution of the Free RadicalTheory of Aging: A Brief Personal History, 1954–2009," Biogerontology 10, no. 6 (December 2009): 773–81, https://doi.org/10.1007/s10522–009–9234–2.
303
R. S. Sohal and R. Weindruch, "Oxidative Stress, Caloric Restriction, and Aging," Science 273, no. 5271 (July 5, 1996):59–63, https://doi.org/10.1126/science.273.5271.59.
304
E. R. Stadtman, "Protein Oxidation and Aging," Free Radical Research 40, no. 12 (December, 2006): 1250–58, https://doi.org/10.1080/10715760600918142.
305
S. E. Schriner et al., "Extension ofMurine Life Span by Overexpression of Catalase Targeted to Mitochondria," Science 308, no. 5730 (June 24, 2005): 1909–11, https://doi.org/10.1126/science.1106653.
306
J. Hartke et al., "What Doesn't Kill You Makes You Live Longer – Longevity of a Social Host Linked to Parasite Proteins,"bioRxiv (2022): https://doi.org/10.1101/2022.12.23.521666.
