нечеткими, все волшебники могут назвать одной из определяющих характеристик этой дисциплины море эмерджентности. Тем не менее, хотя эта идея кажется интуитивно понятной, ее может быть трудно выразить словами. Начать можно со знаменитого коана дзен-буддизма:
Это [хлопает в ладоши] – звук хлопка двумя ладонями. А каков звук хлопка одной ладонью?
Хлопок не содержится ни в одной из двух ладоней; он возникает из их сочетания. Мой друг, философ Леонид Тарасов предложил следующее определение:
Явление эмерджентно тогда, и только тогда, когда оно объяснимо в терминах других явлений, но его объяснение не может быть сведено только к ним.
Другими словами, при исключении из объяснения самого эмерджентного явления из него исчезает нечто существенное. Нужно отметить, что эмерджентность в этом смысле не противоречит другой основе научной мысли – редукционизму, который стремится сводить явления к их сути. Редукционизм – это процесс отделения важных элементов от несущественных. Когда Шерлок Холмс расследует дело, он повторяет нам историю, которую мы только что прочитали, но в редуцированном виде, сохраняя лишь существенные детали. Он способен на это, потому что понял задачу и знает, на какие детали можно не обращать внимания. Как любит подчеркивать мой друг, теоретик Крис Хули, эмерджентность на самом деле представляет собой один из видов редукционизма, но существенные детали в ее случае – это не мельчайшие элементы (элементарные частицы), а коллективные явления. И это вполне понятно: если вам предложат за несколько секунд нарисовать волшебника, вы, вероятно, набросаете условную человеческую фигуру с несколькими деталями – остроконечной шляпой, усыпанной звездами, жезлом, может быть, и совой на плече. Вряд ли вы попытаетесь нарисовать за отведенное время как можно больше атомов, хотя волшебника можно описать и таким образом.
Понятное объяснение можно сформулировать на примере муравьев. Вероятно, вполне можно утверждать, что отдельные муравьи не придумывают особенно замысловатых схем, но целая колония муравьев способна принимать весьма хитроумные коллективные решения. Физик Ричард Фейнман довольно подробно пишет о своих наблюдениях за муравьями в автобиографии «Вы, конечно, шутите, мистер Фейнман!» (Surely You’re Joking, Mr Feynman! 1985). Сначала он заметил, что если посмотреть на цепочку муравьев, пробирающихся к источнику пищи – например кусочку сахара – и от него, оказывается, что они часто выбирают весьма рациональный маршрут. Но как муравей узнает, какой маршрут будет самым лучшим? С учетом масштаба муравья сахар находится далеко от гнезда; на таком расстоянии муравей, вероятно, не видит сахара и не слышит его запаха. Фейнман наблюдал следующее явление. Муравей находит кусочек сахара, по сути дела, случайно. Когда это происходит, он набирает некоторое количество сахара и возвращается к муравейнику довольно-таки окольными путями. Фейнман предположил, что муравей, возможно, оставляет на своем обратном пути ароматические метки, сообщающие другим муравьям, что он нашел нечто ценное, потому что затем по пути, ведущему к сахару, начинают сновать другие муравьи. Постепенно маршруты, по которым следующие муравьи добираются до сахара, становятся все рациональнее: муравьи срезают углы и находят более короткие пути. Очень скоро муравьиная тропа становится хорошим приближением к кратчайшему пути от муравейника к сахару.
Наблюдая это природное явление, Фейнман придумал гипотезу, объясняющую его. Однако, будучи добросовестным ученым, он придумал и эксперимент, позволяющий проверить эту гипотезу на практике. Муравьи попадали в дом через щель у окна и вначале оказывались на подоконнике. Он подвесил кусочек сахара на нитке, чтобы уменьшить вероятность того, что какой-нибудь муравей наткнется на него случайно. Затем он положил на подоконник клочок бумаги. Каждый раз, когда на бумаге оказывался муравей, он подносил бумагу к сахару. Каждый раз, когда муравей слезал с сахара обратно на этот бумажный паром, Фейнман возвращал его на подоконник. Муравьи очень быстро начали передвигаться по прямому пути к бумажному парому, переезжать на нем к сахару, а затем возвращаться на паром и далее в муравейник. Это подтверждало справедливость гипотезы о том, как муравьи выбирают свои маршруты.
Ни один отдельный муравей не понял, как использовать паром: эта идея возникла из совокупности муравьев, коллективно. В дикой природе наблюдали, как муравьи, сцепляясь друг с другом, образуют мосты через расселины шириной в десять или двадцать муравьиных тел. С другой стороны, их поведение иногда бывает ошибочным: иногда можно видеть, как огромные количества муравьев-солдат образуют «смертельные круги» – они ходят друг за другом по кругу, пока в конце концов не умрут от истощения сил. Выяснение того, как такое сложное поведение возникает на основе простых правил, открывает перспективы разнообразных приложений, от «роевой робототехники» (простых роботов, работающих совместно без руководителя) и нанотехнологий до «программируемой материи» (молекулы которой можно «научить» изменять положение для образования требуемой конфигурации). Одной из главных тем исследований в области информатики являются искусственные нейронные сети, позволяющие компьютеру распознавать образы, используя коллективную работу многочисленных простых процессов, – подобно нейронам мозга. Во всех этих случаях речь идет о крупномасштабном сложном поведении, объяснимом в терминах более простых составляющих меньшего масштаба, но не сводимом к ним одним.
Однако самый классический пример, возможно, дает именно то, что интересует нас в этом исследовании больше всего, – сама материя.
Состояния материи
Состояния материи хорошо описал греческий философ Эмпедокл, предположивший, что все на свете состоит из сочетаний классических «стихий» (элементов) – земли, воздуха, огня и воды. Поразительно сходные теории материи существовали и во многих других культурах, в том числе в Древней Индии, Египте, Вавилоне и Тибете, а также в индуизме и буддизме.
На самом деле эта идея, возможно, зародилась в Западной Персии. От названия зороастрийских жрецов – магов, занимавшихся эзотерическими исследованиями в алхимии, астрологии и астрономии, – произошли слова, обозначающие магию во многих языках. Логично предположить, что они были своего рода древними предшественниками современных ученых; если это так, то четыре стихии представляли изначальные познания в физике конденсированного состояния.
Эти стихии поразительно хорошо сохранились и в современной физике в виде знакомых нам четырех состояний вещества: земле соответствует твердое состояние, воде – жидкое, воздуху – газообразное, а огню – плазма, пример четвертого состояния вещества. Хотя у всех этих состояний разные свойства, их общая черта состоит в том, что все они возникают лишь тогда, когда набирается достаточно индивидуальных частиц, чтобы их было не различить в общей толпе. Чтобы понять это, важно научиться рассматривать мир на разных пространственных масштабах.
Рассмотрение разных пространственных и временных масштабов жизненно важно для физики конденсированного состояния, потому что в этой дисциплине рассмотрение эмерджентных свойств повседневного мира часто начинается с описания в терминах элементарных частиц. Эти масштабы удобно классифицировать по методикам экспериментальных исследований, которые применяются для их изучения.
Например,