Ознакомительная версия. Доступно 24 страниц из 133
Как выяснили биологи, занимающиеся проблемами рака, протоонкогены и гены-супрессоры опухолей сидят в ключевых узлах сигнальных путей. Например, белок Ras активирует белок Mek, а тот активирует Erk, который еще через несколько промежуточных ступеней ускоряет деление клетки. Этот каскад, называемый сигнальным путем Ras-Mek-Erk, в нормальной клетке строго регулируется, тем самым строго регулируя и клеточное деление. В раковой же клетке активированный Ras постоянно активирует Mek, а тот так же постоянно активирует Erk, что выражается в бесконтрольном клеточном делении, патологическом митозе.
Однако активированный сигнальный путь ras (Ras → Mek → Erk) не просто ускоряет процесс клеточного деления, а пересекается с другими сигнальными путями, тем самым обеспечивая и другие типичные особенности поведения раковой клетки. В 1990-е годы Джуда Фолкман, хирург-клиницист из бостонской Детской больницы, продемонстрировал, что некоторые активированные сигнальные пути раковой клетки, в том числе и ras, также стимулируют рост кровеносных сосудов в окрестностях опухоли. Таким образом, коварно инициируя развитие вокруг себя сети кровеносных сосудов, опухоль приобретает собственный источник питания, а потом разрастается вокруг этих сосудов гроздьями, точно виноградные лозы. Фолкман назвал этот феномен опухолевым ангиогенезом.
Стэн Корсмейер, гарвардский коллега Фолкмана, обнаружил в раковых клетках и другие активированные сигнальные пути, восходящие к генным мутациям, которые блокируют процесс клеточной смерти, тем самым делая раковую клетку невосприимчивой к сигналам смерти. Другие сигнальные пути позволяют раковым клеткам приобретать подвижность, передвигаться из одной ткани в другую, тем самым образуя метастазы. Еще некоторые генетические каскады увеличивают выживаемость клетки во враждебной среде, так что когда рак, разносясь с кровью, вторгается в другие органы, там его не отторгают и не уничтожают защитные системы организма.
Короче говоря, рак не просто генетическое заболевание — это генетика во всей ее полноте и целостности. Генетические аномалии управляют всеми аспектами поведения раковой клетки. Из раковой клетки расходятся каскады аномальных сигналов, порожденных мутантными генами. Они обеспечивают ее выживание, ускоренный рост, подвижность, способность наращивать вокруг кровеносные сосуды и тем самым добывать источники питания и кислорода — словом, поддерживают жизнь рака.
Интересно, что все эти генные каскады являются, по сути, искажениями сигнальных путей, используемых организмом в обычных условиях. «Гены подвижности», активированные в раковых клетках, — это те же самые гены, которые активирует клетка, когда ей надо двигаться по телу, например, когда клеткам иммунной системы необходимо двигаться к месту инфекции. Опухолевый ангиогенез задействует те же сигнальные пути, которые работают, когда рост сосудов нужен для того, чтобы заживить рану. Ничего принципиально нового, ничего постороннего. Жизнь раковой опухоли — это повторение жизни самого организма, рак — это мы сами, только в кривом зеркале. Сьюзен Зонтаг предостерегала, что очень опасно перегружать болезнь метафорами. Но это не метафора. Раковые клетки — гиперактивные, чрезмерно приспособленные, агрессивные, плодовитые и изобретательные копии нас самих, до самой глубинной своей сути, до последней молекулы.
В начале 1990-х годов биологи, занимающиеся проблемами рака, начали моделировать процесс канцерогенеза в терминах молекулярных изменений в генах. Чтобы понять эту модель, давайте начнем с рассмотрения нормальной клетки, обитающей в левом легком сорокатрехлетнего мастера по установке противопожарного оборудования. Однажды в 1968 году крохотная пылинка асбеста, выпавшая из какой-нибудь огнезащитной прокладки, влетает в легкое с воздухом и опускается поблизости от нашей клетки. Организм реагирует на эту пылинку воспалением. Клетки вокруг начинают судорожно делиться в попытке организма залечить крохотную ранку. На месте событий остается маленькая кучка клеток — потомков исходной клетки.
В одной клетке из этой горстки потомков происходит случайная мутация по гену ras, активирующая его. Клетка, содержащая мутантный ген, начинает делиться быстрее, чем ее соседи, и образует новое скопление клеток внутри первоначального. Это еще не раковые клетки, но в них уже отчасти наблюдается бесконтрольное деление — то есть это самые первые предшественники рака.
Проходит десять лет. Маленькая группка мутантных по гену ras клеток незаметно продолжает размножаться где-то в дальнем углу легкого. Мастер еще и курит. Канцерогены из дыма попадают в глубь легкого и взаимодействуют со скоплением ras-мутантных клеток. Одна из клеток этого скопления приобретает вторичную мутацию в генах, активируя тем самым второй онкоген.
Проходит еще десять лет. Другая клетка из этой вторичной массы случайно попадает под луч на рентгене и обретает очередную мутацию, на сей раз инактивирующую ген-супрессор опухолей. Эта мутация пока не дает никакого результата, потому что в клетке две копии этого гена. Но на следующий год очередная мутация инактивирует вторую копию гена-супрессора. Таким образом образуется клетка, в которой активировано два онкогена и инактивирован один ген-супрессор опухолей.
Роковое шествие начинается, разворачивается полным ходом. Клетки, обладающие четырьмя мутациями, растут гораздо быстрее своих собратьев. По мере размножения они приобретают все новые мутации, активирующие сигнальные пути, которые приводят к еще большей приспособленности и выживаемости клеток. Одна мутация позволяет опухоли стимулировать рост сосудов вокруг нее, следующая обеспечивает клеткам выживание даже в областях тела с низким уровнем кислорода.
Мутантные клетки порождают все новые и новые клетки, до бесконечности. В какой-нибудь из них активируются гены, увеличивающие подвижность. Теперь такая клетка может мигрировать через ткань легких и попасть в кровяное русло. Потомок такой раковой клетки приобретает способность выживать в костной ткани. Эта клетка, переносясь с кровью, достигает наружного края подвздошной кости и обосновывается там, начав очередной цикл выживания, отбора и колонизации. Это — первая метастаза опухоли, изначально образовавшейся в легких.
Мастеру по установке противопожарного оборудования иногда чуточку трудно дышать. В легких будто что-то покалывает. При ходьбе он ощущает, словно бы в груди что-то движется. Минует еще год, ему становится хуже. Он посещает врача и делает томографию, на которой выявляется опухолевая масса в легких, коростой оплетающая бронхи. Биопсия показывает рак легких. Хирург осматривает пациента, изучает снимки грудной клетки и приходит к выводу, что рак неоперабелен. Через три недели после этого визита больной возвращается в клинику, жалуясь на боли в ребрах и бедрах. Сканирование костей показывает метастазы.
Начата внутривенная терапия. Клетки опухоли в легких отзываются на лечение. Пациент проходит мучительный режим множественных цитотоксических препаратов. Однако во время лечения одна из опухолевых клеток приобретает еще одну мутацию, которая обеспечивает ей устойчивость к лекарствам. Через несколько месяцев после начала лечения опухоли проявляются повсюду — в легких, костях, печени. Утром 17 октября 2004 года, одурманенный болеутоляющими наркотиками, пациент умирает на больничной койке в Бостоне, в окружении жены и детей. Крошка асбеста все так же покоится в дальнем уголке легких. Больному семьдесят шесть лет.
Я начал этот рассказ, как гипотетическую историю рака. Гены, канцерогенез и последовательность мутаций в этом ряду были чисто гипотетическими, зато персонаж — совершенно реальным. Это был первый пациент, умерший на моем попечении, когда я проходил практику по онкологии в Массачусетской клинической больнице.
Как я уже говорил, медицина начинается с рассказов. Пациенты рассказывают свои истории, описывая болезнь, — врачи рассказывают другие истории, чтобы понять ее. Наука, в свою очередь, берет слово, пытаясь найти объяснение болезни. История возникновения одного рака — канцерогены, вызвавшие мутации в генах, запустившие каскады сигнальных путей в клетках, проходящих неизбежные циклы мутаций, отбора и выживания, — представляет собой наиболее убедительное наше представление о том, как зарождается рак.
Осенью 1999 года Роберт Вайнберг посетил онкологическую конференцию на Гавайях. Однажды днем они с онкологом Дугласом Ханаханом гуляли по наслоениям лавы в горах, пока не оказались у кратера вулкана. Разговор их был исполнен досады и разочарования. Слишком уж долго о раке рассуждали точно о несуразном хаосе. Биологические характеристики опухолей отличались ярким разнообразием, словно отрицая любую возможность упорядоченной организации. Складывалось впечатление, что для них не существует никаких общих правил.
Ознакомительная версия. Доступно 24 страниц из 133